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Abstract. The simple ‘metallic’ formulae for the phonon drag thermoelectric power (S,) of 
3D free-electron systems appear to be in conflict with the model of Herring, by predicting 
different dependences of S, upon electron density and temperature (7‘) at low T.  We show 
that both approaches can be understood physically by considering the net phonon drift 
velocity. A simple qUaSi-2D expression for S, is then obtained which predicts the underlying 
dependence upon T ,  phonon mean free path L ,  and electron surface density n ,  as LT3/n 
which is the observed behaviour in heterojunctions and MOSFETS. This dependence is modi- 
fied by the efficiency with which momentum is transferred between the electron and phonon 
systems. Boltzmann transport calculations confirm these conclusions and support the simple 
models by reproducing the simple formulae in appropriate limits. 

1. Introduction 

Phonon-drag in quasi-2~ electron gases (2DEGs) is of current interest in phonon absorp- 
tion and emission experiments on electrons confined in heterojunctions and MOSFETS 
(Karl eta1 1988). Thermoelectric power (S) is of particular interest because it is aquantity 
which is very sensitive to the conduction mechanism, scattering, carrier type 
and anisotropy (Blatt 1968, Guenault 1971). In particular, it has become clear that the 
phonon-drag contribution (S,) to S in heterojunctions and MOSFETS is dominant at 
temperatures around that of liquid helium (Fletcher et a1 1988b, Ruf et a1 1988) and is 
sensitive to the electron-phonon coupling mechanism, screening, phonon mean free 
path ( L )  and the coupling constants (Smith and Butcher 1989a, b). This dominance over 
the electron diffusion contribution ( S d )  to S is significant because calculations of Sd in 
high magnetic fields ( B )  predict accurate quantisation of the diagonal components of S d  

(Girvin and Jonson 1982) which has not been observed. In practice, measured values of 
S are recorded which are two orders of magnitude larger than predicted and do not 
follow the expected trend (Fletcher et a1 1986, 1988a, b, D’Iorio er a1 1988, Ruf et a1 
1988). This is due to the presence of drag. Calculations of S,  in a magnetic field are now 
showing promise (Karyagin et a1 1988, Kubakaddi and Butcher 1989) but even with B = 
0 the integral formulae for S, are difficult to interpret physically. 

The calculation of S, is complicated by the need to know the details of the non- 
equilibrium electron and phonon distribution functions. Calculations for hetero- 
junctions and MOSFETS ()Smith and Butcher 1989a, b, Lyo 1988) based on the work of 
Cantrell and Butcher (1987) are now showing good agreement with experimental data 
(e.g. Fletcher et a1 1986, Gallagher et a1 1987). However, simple dependencies of S, 
upon electron surface density ( n )  or temperature T ,  for example, are not readily apparent 
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from the formulae. Attempts have been made to demonstrate such dependencies using 
simple formulae for S, in 3 ~ .  Whilst inaccurate in detail these can be expected to provide 
insight into the expected behaviour. We show here that these formulae are of two types 
which give conflicting information. We put them on a firmer footing by showing that 
both can be derived for 3~ from the Cantrell and Butcher formulae for quasi-2~ by taking 
different limits and by defining relaxation times in specific ways. We are then able to 
show which model is appropriate under certain conditions and how the 3~ formulae can 
be extended to the quasi-2~ case of a heterojunction of MOSFET to predict the dependence 
of S, upon n,  T ,  and L.  By using the idea of saturation of the phonon drift velocity 
(Herring 1954) a further model is obtained which is very similar to, and provides both 
of, the other simple results whose usefulness in different regimes then becomes apparent. 

2. Insight into S, from simple models 

To understand S, it is helpful to consider the phenomenological transport equations for 
the EMF E‘ and heat flux Q:  

E’  = pJ + SVT (1) 

Q = W - K V T  (2) 

Considering cubic systems for simplicity, the quantities p (resistivity), S, II (Peltier 
coefficient) and K (thermal conductivity), become scalars. In what follows in this section 
it is supposed, for convenience, that all the vectors are parallel to the current density J 
and only their components in this direction are considered. We see that S is the EMF E‘ 
per unit temperature gradient when J = 0. We may imagine that a temperature difference 
A Tinitially gives rise to a flow of charge carriers which ceases when the internal electric 
field has built up to prevent further flow. One approach to calculating S,  is therefore to 
consider the balance between the thermoelectric force and the opposing emf acting on 
the carriers. An alternative to this ‘balance approach’ is the ‘I7 approach’ (Herring 1954) 
in which II is calculated in order to use the Onsager relation (S = n/T) to obtain S .  The 
quantity II, ( =S,T) is the contribution to ll arising from the energy flux of phonons 
dragged by an isothermal charge flux. The II approach is conceptually easier because it 
involves a ratio of currents (heat to charge) rather than a balance of forces. Although 
either method can be used to obtain simple formulae for S, the results appear to be in 
conflict, as described in what follows. 

Herring (1954) obtains a simple formula from the ll approach. The phonon heat flux 
Qg (say) in response to an isothermal current density J is written as 

Qg = u,’P (3) 

where U ,  is an averaged speed of sound and P i s  a net phonon momentum density which 
is assumed to follow: 

when disturbed from equilibrium, where tp is the phonon momentum relaxation time. 
On differentiating (4) with respect to t the net phonon force density is obtained. This is 
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the force arising from the dragging of phonons by the charge carriers and thus P i s  given 
by 

P/t, = f,,N,Ee. 

Here fep is the fraction of carrier momentum lost which is delivered to the phonons and 
-N,Ee is the force per unit volume acting on a gas of particles with charge -e having 
volume density N,. Using ( 5 )  in (3) and -Nueve for J ,  equation (2), with VT = 0, gives 

Ilg = - u?f,t,E/u,. (6) 

The result for S, follows by writing the carrier drift velocity as U ,  = pE,  with p the 
mobility, and writing the phonon mean free path L as v, tp .  The result is 

Sg = - f e p ( L U s / p T ) .  (7) 

Nicholas (1985) used such an equation to estimate S, in a GaAs/GaAlAs heterojunction 
at liquid helium temperatures, although the quasi-two-dimensionality is not explicitly 
accounted for. At  such low T, L is in the ‘boundary scattering limit’ and, since p is 
independent of the carrier density Nu,  the principal dependencies of S, arise in this model 
from fep/T. However, unless feP is known, this result is difficult to interpret. If fep is 
assumed constant then S, will be proportional to 1/T and independent of Nu. Experi- 
mentally, however, Gallagher et a1 (1987) find the dependence S, CC 1/N,  for the Si 
MOSFET case and there is no sign of 1/T dependence in the data. 

A different result is obtained from the balance approach which is normally used for 
metals (Blatt 1968). The phonon pressure G, say, is written in terms of the phonon 
(lattice) internal energy density U( T) as 

Differentiating with respect to displacement in the direction (x, say) of a temperature 
gradient, under the balance condition J = 0, the phonon force density is obtained. It is 
then supposed that some fraction fpe of the force exerted by the phonons is exerted upon 
the carriers. Thus fpe is the fraction of momentum lost by the phonons which is delivered 
to the carriers and, since J = 0, the carrier force balance condition is then 

-N,Ee = df,,C,(dT/dx) (9) 

where the lattice specific heat C, is taken as dU/d T. Comparing with (1) when J = 0, 
the result for S, is (Blatt 1968) 

This is very similar to the result obtained by Guenault (1971). The low temperature T3 
dependence arising from C, is modified only for fpe. 

It is difficult to reconcile this ‘metallic’ result for S, with the Herring formula (7) 
without knowledge of fep and f,,. Some attempts have been made in this direction. 
Zavaritsky (1984), for example, uses a balance approach applied to the metallic con- 
duction of quasi-zr, electrons coupled to 3~ phonons to obtain (10) with fpe replaced by 
L/Lp ,  where L,, is the phonon mean free path (longer than L )  for phonon scattering of 
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electrons, alone. The factor L/Lp,  can be obtained iff  is taken as the ratio of the 
phonon scattering rate due to scattering by electrons (rieYsay) to the total (ti '), i.e. 

which follows by multiplying both the zs, by U,. Similarly fep can be written as 

where z, is the total electron momentum relaxation time from all mechanisms and rep is 
that due to scattering of electrons by phonons. Moreover, a further expression obtained 
by Herring is given by using (11) in (7), i.e. 

S g  = (mv:/eT)tp/zep (13) 

where L is replaced by u,zp and ,u by ez,/m. There still remains the problem, however, 
of calculating the relaxation ratios in such formulae before progress can be made. 

When considering S, in semiconductors Blatt (1968) describes another I'I approach 
which can be applied more generally and the result, obtained more directly, is close to 
that from balance arguments but does not involve relaxation ratios. The phonon flux 
due to drag by an isothermal current density J is written as 

This equation defines up as the net phonon drift velocity. since the low temperature limit 
is of interest here, it follows from the Tdependence of C, that 

U( T )  = aC, T. (15) 

The 'drag thermopower follows by substituting these last results into (2), with VTzero, 
using - N,eu, for J and hence 

S ,  = - i (Cu /Nue)up /ue .  

This last expression is helpful since the variation of up with Nu is more readily understood 
than that off,, or fpe arising in (7) and (10). These two expressions should give the same 
result for S, when fep and fpe are calculated in full since although (10) is regarded as a 
metallic formula, no mention has been made of the carrier statistics in either derivation. 
However, writing these fractions in full defeats the object of formulae derived from 
simple physical ideas. It is more helpful if fep and fpe can be regarded as constants in 
particular limits, which must be different since one model predicts a TIN,  dependence 
and the other a 1/T. The quantity up  helps to shed light on this problem. 

First consider the 'saturation effect', described by Herring (1954) in both approaches. 
In the II approach there can be no net phonon flux (up) and Qg are zero) when Nu is zero 
and therefore Qg, and hence up,  must initially increase with Nu. For low N ,  it can 
therefore be supposed that up  cc Nu and, from (16), it is then predicted that S ,  should be 
initially independent of carrier density. By 'low' of course is meant in comparison to 
the phonon population. This limit therefore corresponds to assuming non-degenerate 
carrier statistics or a constantf,, in (7). Suppose now that a phonon flux does exist and 
that Nu is increased further. Since there are more phonons with momenta parallel to the 
charge flow than against, collisions of carriers with phonons of opposite momenta 
become less frequent. The resistance offered by the lattice to the carrier flow is therefore 
reduced. Thus, the rate of transfer of carrier momentum to the phonons is less and there 
is less drag. Hence, the greater the phonon flux the more difficult it becomes to increase 
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it, i.e. the drag effect (and U , )  saturate at large N u .  The same conclusion is reached from 
the balance approach because, when N ,  is sufficiently large, the phonon flux (which 
causes the drag) is reduced by electron scattering. Hence there is less flux to cause the 
drag, which becomes more difficult to increase. Thus, for some large N,,  vp becomes 
independent of N u  and (16) predicts that S, cc N i l .  This is the metallic limit and 
corresponds to assuming a constantf,, in (10). 

Now reconsider (1 1) and (12) for fpe and fep in the light of the insight arising from 
saturation. For large N u ,  ti' will be dominated by scattering from electrons and fpe will 
approach unity. This is the conclusion reached by Guenault (1971) and does indeed give 
S, CC N ; ' .  For low N u ,  r;; is independent of Nu as there is always an excess of phonons, 
i.e. the scattering environment of the carriers is not much altered by low electron 
densities. Since ti1 is also independent of Nu the conclusion is that fep is constant at low 
N ,  and hence, from (7), S, is independent of N u .  

3. Extension to quasi-ZD 

In the quasi-2~ case the phonon heat flux is parallel to the conducting layer, which forms 
a very small fraction (about of the specimen cross-section. Hence t;: is a small 
fraction of z;' which is dominated by boundary scattering. Therefore, electron scat- 
tering is unlikely to reduce the phonon heat flux enough to cause U ,  to saturate. For the 
same reason z;: will be independent of N u  since there is always an abundance of phonons 
from the bulk which are unaffected by the carriers. Here fpe in (12) can be usefully 
written as L/v ,  and S, becomes proportional to the phonon mean free path. The 
quantity r;: is a measure of the phonon momentum transfer rate to electrons. This leads 
to enhancement of S, when the dominant phonon wavevector exactly crosses the Fermi 
circle. The electron density in (16) or (10) is a (3D) volume density but in quasi-2~ the 
(2D) surface density n is a more natural quantity. It is necessary then, to decide whether 
N ,  should be replaced by n/S (where 6 is the channel width), to give the volume density 
of carriers in the channel, or by n/Lz (with L, the specimen width in the confinement 
direction), to give the density with respect to the volume of the specimen. The answer 
from the II approach must be n/Lz since in writing II = Q/J it has been assumed that Q 
is the resultantphonon heat flux, not merely that occurring within the channel, andJ  the 
charge flux through unit area of the specimen. Similarly, in the balance approach, 
multiplying both sides of (9) by the specimen volume (V) gives the balance of the total 
force on the charges. In quasi-2~ the total charge -N,Ve on the left side is replaced by 
-nAe (where AL,  = V) but on the right sidef,, is still the fraction of the total phonon 
momentum delivered to the electron gas. The low dimensionality of the conducting 
channel is thereby already accounted for. Hence dividing by V it is clear that n/L, 
replaces N u .  All the dependence of S,  upon the confinement of the electrons to the 
channel therefore arises from the variation of ti: with S. Finally, the simple expression 
for S, in quasi-2~ is 

S, = S[Cu/(n/L,)el(L/u,)t,-,' (17) 

whichin terms of simple dependenciespredicts S, CC LT3/n. Thissimple result is modified 
by the channel dependence, and some possible enhancement due to favoured phonon 
absorption, arising from z;: . Furthermore, in quasi-2~ the 1/n behaviour is not lost at 
low n since t p ; !  is already independent of n. At an extremely high densityf,,, and hence 
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the l /n  behaviour, might be affected, in principle, by saturation, but such densities may 
not be possible in practice. 

4. Comparison with Boltzmann transport calculations for quasi-2~ 

It is interesting to ask how far the simple models agree with the Boltzmann transport 
result of Cantrell and Butcher (1987) to which the reader is now referred. Most con- 
venient for this purpose is the 3D case which is obtained from their formula (39) by 
replacing (a, k )  by K ,  ( p ,  k' )  by K ' ,  A by V and by performing a generalisation cor- 
responding to that leading to their final result. The sum over K' can be dropped by 
replacing K' by K + Q ,  following the delta symbols in their expression for the scattering 
rate. Simplification is possible if zK is assumed constant (z,) for all K ,  which are 3D plane 
wave states. Hence u(K)  is simply h K / m ,  the 3D conductivity is written N,e2z,/m and 
up@) is taken as uSQ/Q to give 

Writing C, in the form 

S, can be reduced to 

when a(Q) is defined by 

with the phonon scattering rate due to absorption and emission by electrons given by: 

and 

Thus the general quasi-2~ S, formula reproduces the 'metallic' formula when the relax- 
ation time and average over Q are defined as above. The argument used here, however, 
is much stronger than those used to derive the simple formulae and, furthermore, the 
various z make it possible to determine the conditions under which the Herring formula 
may also be valid. 
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By writing r K + Q , K  out in full in equation (18) S, can be written in the form 

Here, an averaged total phonon scattering relaxation time ZpK has been defined by 

where 

ti'@) = tp;l'(Q) + r,-,'<Q> 
and is the total phonon scattering rate given by f'/(-dN$/dhwQ) and 

(tiwe); = t & ( K )  c (hwQ>*pa0(K, K + e) 
Q 

in which: 

and is the total electron scattering rate in state K by phonon absorption. For both the 
non-degenerate and degenerate limits this allows S ,  to be written in a form similar to the 
Herring formula (13) providing the average over Q ,  at given K ,  and the scattering times 
in (30), can be replaced by constant average values and moved to in front of the 
summation. i.e. 

where 

(30) t ( e ) - l  + r (a ) - l  = 2z(a)-1 
eP eP eP 

is assumed. For the non-degenerate limit it is assumed that (hwQ);  = 2mu!kB T. Then, 
since f(K) << 1, f ( K  + Q )  can be dropped and 

(31) 
-- 

Sg(non-deg) -i(mu!/eT)zp/tep* 

For the degenerate case ( h w Q ) i  = 2 m u ; ~ ~ .  Assuming elastic scattering, whereby 
E(K' )  = E @ ) ,  and using 

1 
V K  -Ef (K) ( l  - f ( K ) )  =&kgTdN,/dEf (32) 

Sg(deg) = - :(md/eT)T&,.  (33) 

and taking Nu CL E ! / ' ,  the result for S ,  reduces to 

Hence the more general formula reproduces the expected results, when the averaged t- 
values are appropriately defined. Both the metallic formula (10) and Herring formula 
(13) are obtained approximately, although the latter is valid for the non-degenerate 
limit, or the degenerate limit when the scattering is elastic. The difference between (31) 
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and (33) in terms of trivial numerical constants is of no significance in view of the 
approximate averaging used in their derivation. 

5. Conclusions 

It is now clear that the simple Herring and metallic S,  formulae are not in conflict but 
are most helpful in different limits: the metallic formula for degenerate electron statistics 
and the Herring formula for the non-degenerate case. Both models provide insight into 
phonon-drag and can be understood physically in terms of the net phonon energy drift 
velocity up. These conclusions are confirmed by the Boltzmann transport formalism of 
Cantrell and Butcher applied to 3~ electronic conduction. In quasi-2~ the dependence 
expected of S, is as LT3/n but this has been shown to be naive and is modified by the 
behaviour of xi:. This factor is responsible for the interesting structure which has been 
noted in plots of -Sg/T3 against T. More simplistically the T3 dependence allows S to be 
written as: 

S = S d  + s, = U T +  bT3 (34) 
at low T.  Hence, at very low T ,  S d  (which is linear in T )  will most likely dominate but at 
higher T ,  depending on the values of a and b ,  it will be S, which dominates. At higher T 
still, L will no longer be limited by boundary scattering and will fail. Then S, will also 
be reduced and S d  may again dominate. This dominance changeover S d  + S, + S d  is 
apparently that which is observed in the results of Ruf et a1 (1988). 
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